Bio::PopGen Statistics
SummaryIncluded librariesPackage variablesSynopsisDescriptionGeneral documentationMethods
Toolbar
WebCvs
Summary
Bio::PopGen::Statistics - Population Genetics statistical tests
Package variables
No package variables defined.
Included modules
Bio::MolEvol::CodonModel
List::Util qw ( sum )
Inherit
Bio::Root::Root
Synopsis
  use Bio::PopGen::Statistics;
use Bio::AlignIO;
use Bio::PopGen::IO;
use Bio::PopGen::Simulation::Coalescent;
my $sim = Bio::PopGen::Simulation::Coalescent->new( -sample_size => 12); my $tree = $sim->next_tree; $sim->add_Mutations($tree,20); my $stats = Bio::PopGen::Statistics->new(); my $individuals = [ $tree->get_leaf_nodes]; my $pi = $stats->pi($individuals); my $D = $stats->tajima_D($individuals); # Alternatively to do this on input data from # See the tests in t/PopGen.t for more examples my $parser = Bio::PopGen::IO->new(-format => 'prettybase', -file => 't/data/popstats.prettybase'); my $pop = $parser->next_population; # Note that you can also call the stats as a class method if you like # the only reason to instantiate it (as above) is if you want # to set the verbosity for debugging $pi = Bio::PopGen::Statistics->pi($pop); $theta = Bio::PopGen::Statistics->theta($pop); # Pi and Theta also take additional arguments, # see the documentation for more information use Bio::PopGen::Utilities; use Bio::AlignIO; my $in = Bio::AlignIO->new(-file => 't/data/t7.aln', -format => 'clustalw'); my $aln = $in->next_aln; # get a population, each sequence is an individual and # for the default case, every site which is not monomorphic # is a 'marker'. Each individual will have a 'genotype' for the # site which will be the specific base in the alignment at that # site my $pop = Bio::PopGen::Utilities->aln_to_population(-alignment => $aln);
Description
This object is intended to provide implementations some standard
population genetics statistics about alleles in populations.
This module was previously named Bio::Tree::Statistics.
This object is a place to accumulate routines for calculating various
statistics from the coalescent simulation, marker/allele, or from
aligned sequence data given that you can calculate alleles, number of
segregating sites.
Currently implemented:
Fu and Li's D (fu_and_li_D)
Fu and Li's D* (fu_and_li_D_star)
Fu and Li's F (fu_and_li_F)
Fu and Li's F* (fu_and_li_F_star)
Tajima's D (tajima_D)
Watterson's theta (theta)
pi (pi) - number of pairwise differences
composite_LD (composite_LD)
McDonald-Kreitman (mcdonald_kreitman or MK)
Count based methods also exist in case you have already calculated the
key statistics (seg sites, num individuals, etc) and just want to
compute the statistic.
In all cases where a the method expects an arrayref of
Bio::PopGen::IndividualI objects and Bio::PopGen::PopulationI
object will also work. Fu Y.X and Li W.H. (1993) "Statistical Tests of Neutrality of
Mutations." Genetics 133:693-709.
Fu Y.X. (1996) "New Statistical Tests of Neutrality for DNA samples
from a Population." Genetics 143:557-570.
McDonald J, Kreitman M.
Tajima F. (1989) "Statistical method for testing the neutral mutation
hypothesis by DNA polymorphism." Genetics 123:585-595. Please see this reference for use of this implementation.
Stajich JE and Hahn MW "Disentangling the Effects of Demography and Selection in Human History." (2005) Mol Biol Evol 22(1):63-73.
If you use these Bio::PopGen modules please cite the Bioperl
publication (see FAQ) and the above reference.
Methods
BEGIN Code
fu_and_li_DDescriptionCode
fu_and_li_D_countsDescriptionCode
fu_and_li_D_starDescriptionCode
fu_and_li_D_star_countsDescriptionCode
fu_and_li_FDescriptionCode
fu_and_li_F_countsDescriptionCode
fu_and_li_F_starDescriptionCode
fu_and_li_F_star_countsDescriptionCode
tajima_DDescriptionCode
tajima_D_countsDescriptionCode
piDescriptionCode
thetaDescriptionCode
singleton_countDescriptionCode
segregating_sites_countDescriptionCode
heterozygosityDescriptionCode
derived_mutationsDescriptionCode
composite_LDDescriptionCode
mcdonald_kreitmanDescriptionCode
mcdonald_kreitman_countsDescriptionCode
Methods description
fu_and_li_Dcode    nextTop
 Title   : fu_and_li_D
Usage : my $D = $statistics->fu_and_li_D(\@ingroup,\@outgroup);
OR
my $D = $statistics->fu_and_li_D(\@ingroup,$extmutations);
Function: Fu and Li D statistic for a list of individuals
given an outgroup and the number of external mutations
(either provided or calculated from list of outgroup individuals)
Returns : decimal
Args : $individuals - array reference which contains ingroup individuals
(Bio::PopGen::Individual or derived classes)
$extmutations - number of external mutations OR
arrayref of outgroup individuals
fu_and_li_D_countscodeprevnextTop
 Title   : fu_li_D_counts
Usage : my $D = $statistics->fu_and_li_D_counts($samps,$sites,
$external);
Function: Fu and Li D statistic for the raw counts of the number
of samples, sites, external and internal mutations
Returns : decimal number
Args : number of samples (N)
number of segregating sites (n)
number of external mutations (n_e)
fu_and_li_D_starcodeprevnextTop
 Title   : fu_and_li_D_star
Usage : my $D = $statistics->fu_an_li_D_star(\@individuals);
Function: Fu and Li's D* statistic for a set of samples
Without an outgroup
Returns : decimal number
Args : array ref of Bio::PopGen::IndividualI objects
OR
Bio::PopGen::PopulationI object
fu_and_li_D_star_countscodeprevnextTop
 Title   : fu_li_D_star_counts
Usage : my $D = $statistics->fu_and_li_D_star_counts($samps,$sites,
$singletons);
Function: Fu and Li D statistic for the raw counts of the number of samples, sites, external and internal mutations Returns : decimal number Args : number of samples (N) number of segregating sites (n) singletons (n_s)
fu_and_li_FcodeprevnextTop
 Title   : fu_and_li_F
Usage : my $F = Bio::PopGen::Statistics->fu_and_li_F(\@ingroup,$ext_muts);
Function: Calculate Fu and Li's F on an ingroup with either the set of
outgroup individuals, or the number of external mutations
Returns : decimal number
Args : array ref of Bio::PopGen::IndividualI objects for the ingroup
OR a Bio::PopGen::PopulationI object
number of external mutations OR list of individuals for the outgroup
fu_and_li_F_countscodeprevnextTop
 Title   : fu_li_F_counts
Usage : my $F = $statistics->fu_and_li_F_counts($samps,$pi,
$sites,
$external);
Function: Fu and Li F statistic for the raw counts of the number
of samples, sites, external and internal mutations
Returns : decimal number
Args : number of samples (N)
average pairwise differences (pi)
number of segregating sites (n)
external mutations (n_e)
fu_and_li_F_starcodeprevnextTop
 Title   : fu_and_li_F_star
Usage : my $F = Bio::PopGen::Statistics->fu_and_li_F_star(\@ingroup);
Function: Calculate Fu and Li's F* on an ingroup without an outgroup
It uses count of singleton alleles instead
Returns : decimal number
Args : array ref of Bio::PopGen::IndividualI objects for the ingroup
OR
Bio::PopGen::PopulationI object
fu_and_li_F_star_countscodeprevnextTop
 Title   : fu_li_F_star_counts
Usage : my $F = $statistics->fu_and_li_F_star_counts($samps,
$pi,$sites,
$singletons);
Function: Fu and Li F statistic for the raw counts of the number
of samples, sites, external and internal mutations
Returns : decimal number
Args : number of samples (N)
average pairwise differences (pi)
number of segregating sites (n)
singleton mutations (n_s)
tajima_DcodeprevnextTop
 Title   : tajima_D
Usage : my $D = Bio::PopGen::Statistics->tajima_D(\@samples);
Function: Calculate Tajima's D on a set of samples
Returns : decimal number
Args : array ref of Bio::PopGen::IndividualI objects
OR
Bio::PopGen::PopulationI object
tajima_D_countscodeprevnextTop
 Title   : tajima_D_counts
Usage : my $D = $statistics->tajima_D_counts($samps,$sites,$pi);
Function: Tajima's D statistic for the raw counts of the number
of samples, sites, and avg pairwise distances (pi)
Returns : decimal number
Args : number of samples (N)
number of segregating sites (n)
average pairwise differences (pi)
picodeprevnextTop
 Title   : pi
Usage : my $pi = Bio::PopGen::Statistics->pi(\@inds)
Function: Calculate pi (average number of pairwise differences) given
a list of individuals which have the same number of markers
(also called sites) as available from the get_Genotypes()
call in Bio::PopGen::IndividualI
Returns : decimal number
Args : Arg1= array ref of Bio::PopGen::IndividualI objects
which have markers/mutations. We expect all individuals to
have a marker - we will deal with missing data as a special case.
OR
Arg1= Bio::PopGen::PopulationI object. In the event that
only allele frequency data is available, storing it in
Population object will make this available.
num sites [optional], an optional second argument (integer)
which is the number of sites, then pi returned is pi/site.
thetacodeprevnextTop
 Title   : theta
Usage : my $theta = Bio::PopGen::Statistics->theta($sampsize,$segsites);
Function: Calculates Watterson's theta from the sample size
and the number of segregating sites.
Providing the third parameter, total number of sites will
return theta per site.
This is also known as K-hat = K / a_n
Returns : decimal number
Args : sample size (integer),
num segregating sites (integer)
total sites (integer) [optional] (to calculate theta per site)
OR
provide an arrayref of the Bio::PopGen::IndividualI objects
total sites (integer) [optional] (to calculate theta per site)
OR
provide an Bio::PopGen::PopulationI object
total sites (integer)[optional]
singleton_countcodeprevnextTop
 Title   : singleton_count
Usage : my ($singletons) = Bio::PopGen::Statistics->singleton_count(\@inds)
Function: Calculate the number of mutations/alleles which only occur once in
a list of individuals for all sites/markers
Returns : (integer) number of alleles which only occur once (integer)
Args : arrayref of Bio::PopGen::IndividualI objects
OR
Bio::PopGen::PopulationI object
segregating_sites_countcodeprevnextTop
 Title   : segregating_sites_count
Usage : my $segsites = Bio::PopGen::Statistics->segregating_sites_count
Function: Gets the number of segregating sites (number of polymorphic sites)
Returns : (integer) number of segregating sites
Args : arrayref of Bio::PopGen::IndividualI objects
OR
Bio::PopGen::PopulationI object
heterozygositycodeprevnextTop
 Title   : heterozygosity
Usage : my $het = Bio::PopGen::Statistics->heterozygosity($sampsize,$freq1);
Function: Calculate the heterozgosity for a sample set for a set of alleles
Returns : decimal number
Args : sample size (integer)
frequency of one allele (fraction - must be less than 1)
[optional] frequency of another allele - this is only needed
in a non-binary allele system
Note : p^2 + 2pq + q^2
derived_mutationscodeprevnextTop
 Title   : derived_mutations
Usage : my $ext = Bio::PopGen::Statistics->derived_mutations($ingroup,$outgroup);
Function: Calculate the number of alleles or (mutations) which are ancestral
and the number which are derived (occurred only on the tips)
Returns : array of 2 items - number of external and internal derived
mutation
Args : ingroup - Bio::PopGen::IndividualIs arrayref OR
Bio::PopGen::PopulationI
outgroup- Bio::PopGen::IndividualIs arrayref OR
Bio::PopGen::PopulationI OR
a single Bio::PopGen::IndividualI
composite_LDcodeprevnextTop
 Title   : composite_LD
Usage : %matrix = Bio::PopGen::Statistics->composite_LD($population);
Function: Calculate the Linkage Disequilibrium
This is for calculating LD for unphased data.
Other methods will be appropriate for phased haplotype data.
Returns : Hash of Hashes - first key is site 1,second key is site 2 and value is LD for those two sites. my $LDarrayref = $matrix{$site1}->{$site2}; my ($ldval, $chisquared) = @$LDarrayref; Args : Bio::PopGen::PopulationI or arrayref of
Bio::PopGen::IndividualIs
Reference: Weir B.S. (1996) "Genetic Data Analysis II",
Sinauer, Sunderlanm MA.
mcdonald_kreitmancodeprevnextTop
 Title   : mcdonald_kreitman
Usage : $Fstat = mcdonald_kreitman($ingroup, $outgroup);
Function: Calculates McDonald-Kreitman statistic based on a set of ingroup
individuals and an outgroup by computing the number of
differences at synonymous and non-synonymous sites
for intraspecific comparisons and with the outgroup
Returns : 2x2 table, followed by a hash reference indicating any
warning messages about the status of the alleles or codons
Args : -ingroup => Bio::PopGen::Population object or
arrayref of Bio::PopGen::Individuals
-outgroup => Bio::PopGen::Population object or
arrayef of Bio::PopGen::Individuals
-polarized => Boolean, to indicate if this should be
a polarized test. Must provide two individuals
as outgroups.
mcdonald_kreitman_countscodeprevnextTop
 Title   : mcdonald_kreitman_counts
Usage : my $MK = $statistics->mcdonald_kreitman_counts(
N_poly -> integer of count of non-syn polymorphism N_fix -> integer of count of non-syn fixed substitutions S_poly -> integer of count of syn polymorphism S_fix -> integer of count of syn fixed substitutions ); Function: Returns : decimal number Args :
Methods code
BEGINTop
BEGIN {
    eval { require Text::NSP::Measures::2D::Fisher2::twotailed };
    if( $@ ) { $has_twotailed = 0; }
    else { $has_twotailed = 1;
}
fu_and_li_DdescriptionprevnextTop
sub fu_and_li_D {
     my ($self,$ingroup,$outgroup) = @_;

    my ($seg_sites,$n,$ancestral,$derived) = (0,0,0,0);
    if( ref($ingroup) =~ /ARRAY/i ) {
	$n = scalar @$ingroup;
	# pi - all pairwise differences 
$seg_sites = $self->segregating_sites_count($ingroup); } elsif( ref($ingroup) && $ingroup->isa('Bio::PopGen::PopulationI')) { $n = $ingroup->get_number_individuals; $seg_sites = $self->segregating_sites_count($ingroup); } else { $self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to fu_and_li_D"); return 0; } if( $seg_sites <= 0 ) { $self->warn("mutation total was not > 0, cannot calculate a Fu and Li D"); return 0; } if( ! defined $outgroup ) { $self->warn("Need to provide either an array ref to the outgroup individuals or the number of external mutations"); return 0; } elsif( ref($outgroup) ) { ($ancestral,$derived) = $self->derived_mutations($ingroup,$outgroup); $ancestral = 0 unless defined $ancestral; } else { $ancestral = $outgroup; } return $self->fu_and_li_D_counts($n,$seg_sites, $ancestral,$derived);
}
fu_and_li_D_countsdescriptionprevnextTop
sub fu_and_li_D_counts {
    my ($self,$n,$seg_sites, $external_mut) = @_;
    my $a_n = 0;
    if( $n <= 3 ) {
	$self->warn("n is $n, too small, must be > 3\n");
	return;
    }
    for(my $k= 1; $k < $n; $k++ ) {
	$a_n += ( 1 / $k );
} my $b = 0; for(my $k= 1; $k < $n; $k++ ) { $b += ( 1 / $k**2 );
} my $c = 2 * ( ( ( $n * $a_n ) - (2 * ( $n -1 ))) /
( (
$n - 1) * ( $n - 2 ) ) );
my $v = 1 + ( ( $a_n**2 / ( $b + $a_n**2 ) ) *
(
$c - ( ( $n + 1) / ( $n - 1) ) )); my $u = $a_n - 1 - $v; ($seg_sites - $a_n * $external_mut) /
sqrt( (
$u * $seg_sites) + ($v * $seg_sites*$seg_sites));
}
fu_and_li_D_stardescriptionprevnextTop
sub fu_and_li_D_star {
    my ($self,$individuals) = @_;

    my ($seg_sites,$n,$singletons);
    if( ref($individuals) =~ /ARRAY/i ) {
	$n = scalar @$individuals;
	$seg_sites   = $self->segregating_sites_count($individuals);
	$singletons  = $self->singleton_count($individuals);
    } elsif( ref($individuals) && 
	     $individuals->isa('Bio::PopGen::PopulationI')) {
	my $pop = $individuals;
	$n = $pop->get_number_individuals;
	$seg_sites   = $self->segregating_sites_count($pop);
	$singletons  = $self->singleton_count($pop);
    } else { 
	$self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to fu_and_li_D_star");
	return 0;
    }

    return $self->fu_and_li_D_star_counts($n,$seg_sites, $singletons);
}
fu_and_li_D_star_countsdescriptionprevnextTop
sub fu_and_li_D_star_counts {
    my ($self,$n,$seg_sites, $singletons) = @_;
    my $a_n;
    for(my $k = 1; $k < $n; $k++ ) {
	$a_n += ( 1 / $k );
} my $a1 = $a_n + 1 / $n;
my $b = 0; for(my $k= 1; $k < $n; $k++ ) { $b += ( 1 / $k**2 );
} my $c = 2 * ( ( ( $n * $a_n ) - (2 * ( $n -1 ))) /
( (
$n - 1) * ( $n - 2 ) ) );
my $d = $c + ($n -2) / ($n - 1)**2 +
2 /
($n -1) * ( 1.5 - ( (2*$a1 - 3) / ($n -2) ) -
1 /
$n ); my $v_star = ( ( ($n/($n-1) )**2)*$b + (($a_n**2)*$d) -
(2*( (
$n*$a_n*($a_n+1)) )/(($n-1)**2)) ) /
((
$a_n**2) + $b);
my $u_star = ( ($n/($n-1))*
(
$a_n - ($n/ ($n-1)))) - $v_star; return (($n / ($n - 1)) * $seg_sites -
$a_n * $singletons) / sqrt( ($u_star * $seg_sites) + ($v_star * $seg_sites*$seg_sites));
}
fu_and_li_FdescriptionprevnextTop
sub fu_and_li_F {
    my ($self,$ingroup,$outgroup) = @_;
    my ($seg_sites,$pi,$n,$external,$internal);
    if( ref($ingroup) =~ /ARRAY/i ) {
	$n = scalar @$ingroup;
	# pi - all pairwise differences 
$pi = $self->pi($ingroup); $seg_sites = $self->segregating_sites_count($ingroup); } elsif( ref($ingroup) && $ingroup->isa('Bio::PopGen::PopulationI')) { $n = $ingroup->get_number_individuals; $pi = $self->pi($ingroup); $seg_sites = $self->segregating_sites_count($ingroup); } else { $self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to Fu and Li's F"); return 0; } if( ! defined $outgroup ) { $self->warn("Need to provide either an array ref to the outgroup individuals or the number of external mutations"); return 0; } elsif( ref($outgroup) ) { ($external,$internal) = $self->derived_mutations($ingroup,$outgroup); } else { $external = $outgroup; } $self->fu_and_li_F_counts($n,$pi,$seg_sites,$external);
}
fu_and_li_F_countsdescriptionprevnextTop
sub fu_and_li_F_counts {
    my ($self,$n,$pi,$seg_sites, $external) = @_;
    my $a_n = 0;
    for(my $k= 1; $k < $n; $k++ ) {
	$a_n += ( 1 / $k );
} my $a1 = $a_n + (1 / $n );
my $b = 0; for(my $k= 1; $k < $n; $k++ ) { $b += ( 1 / $k**2 );
} my $c = 2 * ( ( ( $n * $a_n ) - (2 * ( $n -1 ))) /
( (
$n - 1) * ( $n - 2 ) ) );
my $v_F = ( $c + ( (2*(($n**2)+$n+3)) /
( (9*
$n)*($n-1) ) ) -
(2/
($n-1)) ) / ( ($a_n**2)+$b );
my $u_F = ( 1 + ( ($n+1)/(3*($n-1)) )-
( 4*( (
$n+1)/(($n-1)**2) ))* ($a1 - ((2*$n)/($n+1))) ) / $a_n - $v_F; # warn("$v_F vf $u_F uf n = $n\n");
my $F = ($pi - $external) / ( sqrt( ($u_F*$seg_sites) +
(
$v_F*($seg_sites**2)) ) );
return $F;
}
fu_and_li_F_stardescriptionprevnextTop
sub fu_and_li_F_star {
    my ($self,$individuals) = @_;

    my ($seg_sites,$pi,$n,$singletons);
    if( ref($individuals) =~ /ARRAY/i ) {
	$n = scalar @$individuals;
	# pi - all pairwise differences 
$pi = $self->pi($individuals); $seg_sites = $self->segregating_sites_count($individuals); $singletons = $self->singleton_count($individuals); } elsif( ref($individuals) && $individuals->isa('Bio::PopGen::PopulationI')) { my $pop = $individuals; $n = $pop->get_number_individuals; $pi = $self->pi($pop); $seg_sites = $self->segregating_sites_count($pop); $singletons = $self->singleton_count($pop); } else { $self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to fu_and_li_F_star"); return 0; } return $self->fu_and_li_F_star_counts($n, $pi, $seg_sites, $singletons);
}
fu_and_li_F_star_countsdescriptionprevnextTop
sub fu_and_li_F_star_counts {
    my ($self,$n,$pi,$seg_sites, $singletons) = @_;
    if( $n <= 1 ) {
	$self->warn("N must be > 1\n");
	return;
    }
    if( $n == 2) { 
	return 0;
    } 

    my $a_n = 0;
    

    my $b = 0;
    for(my $k= 1; $k < $n; $k++ ) {
	$b += (1 / ($k**2));
$a_n += ( 1 / $k ); # Eq (2)
}
my
$a1 = $a_n + (1 / $n ); # warn("a_n is $a_n a1 is $a1 n is $n b is $b\n");
# From Simonsen et al (1995) instead of Fu and Li 1993
my $v_F_star = ( (( 2 * $n ** 3 + 110 * $n**2 - (255 * $n) + 153)/
(9 * (
$n ** 2) * ( $n - 1))) +
((2 * (
$n - 1) * $a_n ) / $n ** 2) - (8 * $b / $n) ) / ( ($a_n ** 2) + $b ); my $u_F_star = ((( (4* ($n**2)) + (19 * $n) + 3 - (12 * ($n + 1)* $a1)) /
(3 *
$n * ( $n - 1))) / $a_n) - $v_F_star; # warn("vf* = $v_F_star uf* = $u_F_star n = $n\n");
my $F_star = ( $pi - ($singletons*( ( $n-1) / $n)) ) / sqrt ( $u_F_star*$seg_sites + $v_F_star*$seg_sites**2); return $F_star;
}
tajima_DdescriptionprevnextTop
sub tajima_D {
    my ($self,$individuals) = @_;
    my ($seg_sites,$pi,$n);

    if( ref($individuals) =~ /ARRAY/i ) {
	$n = scalar @$individuals;
	# pi - all pairwise differences 
$pi = $self->pi($individuals); $seg_sites = $self->segregating_sites_count($individuals); } elsif( ref($individuals) && $individuals->isa('Bio::PopGen::PopulationI')) { my $pop = $individuals; $n = $pop->get_number_individuals; $pi = $self->pi($pop); $seg_sites = $self->segregating_sites_count($pop); } else { $self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to tajima_D"); return 0; } $self->tajima_D_counts($n,$seg_sites,$pi);
}
tajima_D_countsdescriptionprevnextTop
sub tajima_D_counts {
    my ($self,$n,$seg_sites,$pi) = @_;
    my $a1 = 0; 
    for(my $k= 1; $k < $n; $k++ ) {
	$a1 += ( 1 / $k );
} my $a2 = 0; for(my $k= 1; $k < $n; $k++ ) { $a2 += ( 1 / $k**2 );
} my $b1 = ( $n + 1 ) / ( 3* ( $n - 1) );
my $b2 = ( 2 * ( $n ** 2 + $n + 3) ) /
( ( 9 *
$n) * ( $n - 1) );
my $c1 = $b1 - ( 1 / $a1 );
my $c2 = $b2 - ( ( $n + 2 ) /
(
$a1 * $n))+( $a2 / $a1 ** 2); my $e1 = $c1 / $a1;
my $e2 = $c2 / ( $a1**2 + $a2 );
my $denom = sqrt ( ($e1 * $seg_sites) + (( $e2 * $seg_sites) * ( $seg_sites - 1))); return if $denom == 0; my $D = ( $pi - ( $seg_sites / $a1 ) ) / $denom; return $D;
}
pidescriptionprevnextTop
sub pi {
    my ($self,$individuals,$numsites) = @_;
    my (%data,%marker_total,@marker_names,$n);

    if( ref($individuals) =~ /ARRAY/i ) {
	# one possible argument is an arrayref of Bio::PopGen::IndividualI objs
@marker_names = $individuals->[0]->get_marker_names; $n = scalar @$individuals; # Here we are calculating the allele frequencies
foreach my $ind ( @$individuals ) { if( ! $ind->isa('Bio::PopGen::IndividualI') ) { $self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects, this is a ".ref($ind)."\n"); return 0; } foreach my $m ( @marker_names ) { foreach my $allele (map { $_->get_Alleles} $ind->get_Genotypes($m) ) { $data{$m}->{$allele}++; $marker_total{$m}++; } } } # while( my ($marker,$count) = each %marker_total ) {
# foreach my $c ( values %{$data{$marker}} ) {
# $c /= $count;
# }
# }
# %data will contain allele frequencies for each marker, allele
} elsif( ref($individuals) && $individuals->isa('Bio::PopGen::PopulationI') ) { my $pop = $individuals; $n = $pop->get_number_individuals; foreach my $marker( $pop->get_Markers ) { push @marker_names, $marker->name; #$data{$marker->name} = {$marker->get_Allele_Frequencies};
my @genotypes = $pop->get_Genotypes(-marker => $marker->name); for my $al ( map { $_->get_Alleles} @genotypes ) { $data{$marker->name}->{$al}++; $marker_total{$marker->name}++; } } } else { $self->throw("expected an array reference of a list of Bio::PopGen::IndividualI to pi"); } # based on Kevin Thornton's code:
# http://molpopgen.org/software/libsequence/doc/html/PolySNP_8cc-source.html#l00152
# For now we assume that all individuals have the same markers
my ($diffcount,$totalcompare) = (0,0); my $pi = 0; while ( my ($marker,$markerdat) = each %data ) { my $sampsize = $marker_total{$marker}; my $ssh = 0; my @alleles = keys %$markerdat; if ( $sampsize > 1 ) { my $denom = $sampsize * ($sampsize - 1.0); foreach my $al ( @alleles ) { $ssh += ($markerdat->{$al} * ($markerdat->{$al} - 1)) / $denom;
} $pi += 1.0 - $ssh; } } $self->debug( "pi=$pi\n"); if( $numsites ) { return $pi / $numsites;
} else { return $pi; }
}
thetadescriptionprevnextTop
sub theta {
    my $self = shift;
    my ( $n, $seg_sites,$totalsites) = @_;
    if( ref($n) =~ /ARRAY/i ) {
	my $samps = $n;
	$totalsites = $seg_sites; # only 2 arguments if one is an array
my %data; my @marker_names = $samps->[0]->get_marker_names; # we need to calculate number of polymorphic sites
$seg_sites = $self->segregating_sites_count($samps); $n = scalar @$samps; } elsif(ref($n) && $n->isa('Bio::PopGen::PopulationI') ) { # This will handle the case when we pass in a PopulationI object
my $pop = $n; $totalsites = $seg_sites; # shift the arguments over by one
$n = $pop->haploid_population->get_number_individuals; $seg_sites = $self->segregating_sites_count($pop); } my $a1 = 0; for(my $k= 1; $k < $n; $k++ ) { $a1 += ( 1 / $k );
} if( $totalsites ) { # 0 and undef are the same can't divide by them
$seg_sites /= $totalsites;
} if( $a1 == 0 ) { return 0; } return $seg_sites / $a1;
}
singleton_countdescriptionprevnextTop
sub singleton_count {
    my ($self,$individuals) = @_;

    my @inds;
    if( ref($individuals) =~ /ARRAY/ ) {
	@inds = @$individuals;
    } elsif( ref($individuals) && 
	     $individuals->isa('Bio::PopGen::PopulationI') ) {
	my $pop = $individuals;
	@inds = $pop->get_Individuals();
	unless( @inds ) { 
	    $self->warn("Need to provide a population which has individuals loaded, not just a population with allele frequencies");
	    return 0;
	}
    } else {
	$self->warn("Expected either a PopulationI object or an arrayref of IndividualI objects");
	return 0;
    }
    # find number of sites where a particular allele is only seen once
my ($singleton_allele_ct,%sites) = (0); # first collect all the alleles into a hash structure
foreach my $n ( @inds ) { if( ! $n->isa('Bio::PopGen::IndividualI') ) { $self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects, this is a ".ref($n)."\n"); return 0; } foreach my $g ( $n->get_Genotypes ) { my ($nm,@alleles) = ($g->marker_name, $g->get_Alleles); foreach my $allele (@alleles ) { $sites{$nm}->{$allele}++; } } } foreach my $site ( values %sites ) { # don't really care what the name is
foreach my $allelect ( values %$site ) { #
# find the sites which have an allele with only 1 copy
$singleton_allele_ct++ if( $allelect == 1 ); } } return $singleton_allele_ct; } # Yes I know that singleton_count and segregating_sites_count are
# basically processing the same data so calling them both is
# redundant, something I want to fix later but want to make things
# correct and simple first
}
segregating_sites_countdescriptionprevnextTop
sub segregating_sites_count {
   my ($self,$individuals) = @_;
   my $type = ref($individuals);
   my $seg_sites = 0;
   if( $type =~ /ARRAY/i ) {
       my %sites;
       foreach my $n ( @$individuals ) {
	   if( ! $n->isa('Bio::PopGen::IndividualI') ) {
	       $self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects, this is a ".ref($n)."\n");
	       return 0;
	   }
	   foreach my $g ( $n->get_Genotypes ) {
	       my ($nm,@alleles) = ($g->marker_name, $g->get_Alleles);
	       foreach my $allele (@alleles ) {
		   $sites{$nm}->{$allele}++;
	       }
	   }
       }
       foreach my $site ( values %sites ) { # use values b/c we don't 
# really care what the name is
# find the sites which >1 allele
$seg_sites++ if( keys %$site > 1 ); } } elsif( $type && $individuals->isa('Bio::PopGen::PopulationI') ) { foreach my $marker ( $individuals->haploid_population->get_Markers ) { my @alleles = $marker->get_Alleles; $seg_sites++ if ( scalar @alleles > 1 ); } } else { $self->warn("segregating_sites_count expects either a PopulationI object or a list of IndividualI objects"); return 0; } return $seg_sites;
}
heterozygositydescriptionprevnextTop
sub heterozygosity {
    my ($self,$samp_size, $freq1,$freq2) = @_;
    if( ! $freq2 ) { $freq2 = 1 - $freq1 }
    if( $freq1 > 1 || $freq2 > 1 ) { 
	$self->warn("heterozygosity expects frequencies to be less than 1");
    }
    my $sum = ($freq1**2) + (($freq2)**2);
    my $h = ( $samp_size*(1- $sum) ) / ($samp_size - 1) ;
return $h;
}
derived_mutationsdescriptionprevnextTop
sub derived_mutations {
   my ($self,$ingroup,$outgroup) = @_;
   my (%indata,%outdata,@marker_names);

   # basically we have to do some type checking
# if that perl were typed...
my ($itype,$otype) = (ref($ingroup),ref($outgroup)); return $outgroup unless( $otype ); # we expect arrayrefs or objects, nums
# are already the value we
# are searching for
# pick apart the ingroup
# get the data
if( ref($ingroup) =~ /ARRAY/i ) { if( ! ref($ingroup->[0]) || ! $ingroup->[0]->isa('Bio::PopGen::IndividualI') ) { $self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects or a Population for ingroup in external_mutations"); return 0; } # we assume that all individuals have the same markers
# i.e. that they are aligned
@marker_names = $ingroup->[0]->get_marker_names; for my $ind ( @$ingroup ) { for my $m ( @marker_names ) { for my $allele ( map { $_->get_Alleles } $ind->get_Genotypes($m) ) { $indata{$m}->{$allele}++; } } } } elsif( ref($ingroup) && $ingroup->isa('Bio::PopGen::PopulationI') ) { @marker_names = $ingroup->get_marker_names; for my $ind ( $ingroup->haploid_population->get_Individuals() ) { for my $m ( @marker_names ) { for my $allele ( map { $_->get_Alleles} $ind->get_Genotypes($m) ) { $indata{$m}->{$allele}++; } } } } else { $self->warn("Need an arrayref of Bio::PopGen::IndividualI objs or a Bio::PopGen::Population for ingroup in external_mutations"); return 0; } if( $otype =~ /ARRAY/i ) { if( ! ref($outgroup->[0]) || ! $outgroup->[0]->isa('Bio::PopGen::IndividualI') ) { $self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects or a Population for outgroup in external_mutations"); return 0; } for my $ind ( @$outgroup ) { for my $m ( @marker_names ) { for my $allele ( map { $_->get_Alleles } $ind->get_Genotypes($m) ) { $outdata{$m}->{$allele}++; } } } } elsif( $otype->isa('Bio::PopGen::PopulationI') ) { for my $ind ( $outgroup->haploid_population->get_Individuals() ) { for my $m ( @marker_names ) { for my $allele ( map { $_->get_Alleles} $ind->get_Genotypes($m) ) { $outdata{$m}->{$allele}++; } } } } else { $self->warn("Need an arrayref of Bio::PopGen::IndividualI objs or a Bio::PopGen::Population for outgroup in external_mutations"); return 0; } # derived mutations are defined as
#
# ingroup (G A T)
# outgroup (A)
# derived mutations are G and T, A is the external mutation
# ingroup (A T)
# outgroup (C)
# derived mutations A,T no external/ancestral mutations
# ingroup (G A T)
# outgroup (A T)
# cannot determine
my ($internal,$external); foreach my $marker ( @marker_names ) { my @outalleles = keys %{$outdata{$marker}}; my @in_alleles = keys %{$indata{$marker}}; next if( @outalleles > 1 || @in_alleles == 1); for my $allele ( @in_alleles ) { if( ! exists $outdata{$marker}->{$allele} ) { if( $indata{$marker}->{$allele} == 1 ) { $external++; } else { $internal++; } } } } return ($external, $internal);
}
composite_LDdescriptionprevnextTop
sub composite_LD {
    my ($self,$pop) = @_;
    if( ref($pop) =~ /ARRAY/i ) {
	if( ref($pop->[0]) && $pop->[0]->isa('Bio::PopGen::IndividualI') ) {
	    $pop = Bio::PopGen::Population->new(-individuals => @$pop);
	} else { 
	    $self->warn("composite_LD expects a Bio::PopGen::PopulationI or an arrayref of Bio::PopGen::IndividualI objects");
	    return ();
	}
    } elsif( ! ref($pop) || ! $pop->isa('Bio::PopGen::PopulationI') ) {
	$self->warn("composite_LD expects a Bio::PopGen::PopulationI or an arrayref of Bio::PopGen::IndividualI objects");
	return ();
    }

    my @marker_names = $pop->get_marker_names;
    my @inds = $pop->get_Individuals;
    my $num_inds = scalar @inds;
    my (%lookup);
    # calculate allele frequencies for each marker from the population
# use the built-in get_Marker to get the allele freqs
# we still need to calculate the genotype frequencies
foreach my $marker_name ( @marker_names ) { my(%allelef); foreach my $ind ( @inds ) { my ($genotype) = $ind->get_Genotypes(-marker => $marker_name); if( ! defined $genotype ) { $self->warn("no genotype for marker $marker_name for individual ". $ind->unique_id. "\n"); next; } my @alleles = sort $genotype->get_Alleles; next if( scalar @alleles != 2); my $genostr = join(',', @alleles); $allelef{$alleles[0]}++; $allelef{$alleles[1]}++; } # we should check for cases where there > 2 alleles or
# only 1 allele and throw out those markers.
my @alleles = sort keys %allelef; my $allele_count = scalar @alleles; # test if site is polymorphic
if( $allele_count != 2) { # only really warn if we're seeing multi-allele
$self->warn("Skipping $marker_name because it has $allele_count alleles (".join(',',@alleles)."),\n composite_LD will currently only work for biallelic markers") if $allele_count > 2; next; # skip this marker
} # Need to do something here to detect alleles which aren't
# a single character
if( length($alleles[0]) != 1 || length($alleles[1]) != 1 ) { $self->warn("An individual has an allele which is not a single base, this is currently not supported in composite_LD - consider recoding the allele as a single character"); next; } # fix the call for allele 1 (A or B) and
# allele 2 (a or b) in terms of how we'll do the
# N square from Weir p.126
$self->debug( "$alleles[0] is 1, $alleles[1] is 2 for $marker_name\n"); $lookup{$marker_name}->{'1'} = $alleles[0]; $lookup{$marker_name}->{'2'} = $alleles[1]; } @marker_names = sort keys %lookup; my $site_count = scalar @marker_names; # where the final data will be stored
my %stats_for_sites; # standard way of generating pairwise combos
# LD is done by comparing all the pairwise site (marker)
# combinations and keeping track of the genotype and
# pairwise genotype (ie genotypes of the 2 sites) frequencies
for( my $i = 0; $i < $site_count - 1; $i++ ) { my $site1 = $marker_names[$i]; for( my $j = $i+1; $j < $site_count ; $j++) { my (%genotypes, %total_genotype_count,$total_pairwisegeno_count, %pairwise_genotypes); my $site2 = $marker_names[$j]; my (%allele_count,%allele_freqs) = (0,0); foreach my $ind ( @inds ) { # build string of genotype at site 1
my ($genotype1) = $ind->get_Genotypes(-marker => $site1); my @alleles1 = sort $genotype1->get_Alleles; # if an individual has only one available allele
# (has a blank or N for one of the chromosomes)
# we don't want to use it in our calculation
next unless( scalar @alleles1 == 2); my $genostr1 = join(',', @alleles1); # build string of genotype at site 2
my ($genotype2) = $ind->get_Genotypes(-marker => $site2); my @alleles2 = sort $genotype2->get_Alleles; my $genostr2 = join(',', @alleles2); next unless( scalar @alleles2 == 2); for (@alleles1) { $allele_count{$site1}++; $allele_freqs{$site1}->{$_}++; } $genotypes{$site1}->{$genostr1}++; $total_genotype_count{$site1}++; for (@alleles2) { $allele_count{$site2}++; $allele_freqs{$site2}->{$_}++; } $genotypes{$site2}->{$genostr2}++; $total_genotype_count{$site2}++; # We are using the $site1,$site2 to signify
# a unique key
$pairwise_genotypes{"$genostr1,$genostr2"}++; # some individuals
$total_pairwisegeno_count++; } for my $site ( %allele_freqs ) { for my $al ( keys %{ $allele_freqs{$site} } ) { $allele_freqs{$site}->{$al} /= $allele_count{$site};
} } my $n = $total_pairwisegeno_count; # number of pairs of comparisons
# 'A' and 'B' are two loci or in our case site1 and site2
my $allele1_site1 = $lookup{$site1}->{'1'}; # this is the BigA allele
my $allele1_site2 = $lookup{$site2}->{'1'}; # this is the BigB allele
my $allele2_site1 = $lookup{$site1}->{'2'}; # this is the LittleA allele
my $allele2_site2 = $lookup{$site2}->{'2'}; # this is the LittleB allele
# AABB
my $N1genostr = join(",",( $allele1_site1, $allele1_site1, $allele1_site2, $allele1_site2)); $self->debug(" [$site1,$site2](AABB) N1genostr=$N1genostr\n"); # AABb
my $N2genostr = join(",",( $allele1_site1, $allele1_site1, $allele1_site2, $allele2_site2)); $self->debug(" [$site1,$site2](AABb) N2genostr=$N2genostr\n"); # AaBB
my $N4genostr = join(",",( $allele1_site1, $allele2_site1, $allele1_site2, $allele1_site2)); $self->debug(" [$site1,$site2](AaBB) N4genostr=$N4genostr\n"); # AaBb
my $N5genostr = join(",",( $allele1_site1, $allele2_site1, $allele1_site2, $allele2_site2)); $self->debug(" [$site1,$site2](AaBb) N5genostr=$N5genostr\n"); # count of AABB in
my $n1 = $pairwise_genotypes{$N1genostr} || 0; # count of AABb in
my $n2 = $pairwise_genotypes{$N2genostr} || 0; # count of AaBB in
my $n4 = $pairwise_genotypes{$N4genostr} || 0; # count of AaBb in
my $n5 = $pairwise_genotypes{$N5genostr} || 0; my $homozA_site1 = join(",", ($allele1_site1,$allele1_site1)); my $homozB_site2 = join(",", ($allele1_site2,$allele1_site2)); my $p_AA = ($genotypes{$site1}->{$homozA_site1} || 0) / $n;
my $p_BB = ($genotypes{$site2}->{$homozB_site2} || 0) / $n;
my $p_A = $allele_freqs{$site1}->{$allele1_site1} || 0; # an individual allele freq
my $p_a = 1 - $p_A; my $p_B = $allele_freqs{$site2}->{$allele1_site2} || 0; # an individual allele freq
my $p_b = 1 - $p_B; # variance of allele frequencies
my $pi_A = $p_A * $p_a; my $pi_B = $p_B * $p_b; # hardy weinberg
my $D_A = $p_AA - $p_A**2; my $D_B = $p_BB - $p_B**2; my $n_AB = 2*$n1 + $n2 + $n4 + 0.5 * $n5; $self->debug("n_AB=$n_AB -- n1=$n1, n2=$n2 n4=$n4 n5=$n5\n"); my $delta_AB = (1 / $n ) * ( $n_AB ) - ( 2 * $p_A * $p_B );
$self->debug("delta_AB=$delta_AB -- n=$n, n_AB=$n_AB p_A=$p_A, p_B=$p_B\n"); $self->debug(sprintf(" (%d * %.4f) / ( %.2f + %.2f) * ( %.2f + %.2f)\n ", $n,$delta_AB**2, $pi_A, $D_A, $pi_B, $D_B)); my $chisquared; eval { $chisquared = ( $n * ($delta_AB**2) ) /
( (
$pi_A + $D_A) * ( $pi_B + $D_B) );
}; if( $@ ) { $self->debug("Skipping the site because the denom is 0.\nsite1=$site1, site2=$site2 : pi_A=$pi_A, pi_B=$pi_B D_A=$D_A, D_B=$D_B\n"); next; } # this will be an upper triangular matrix
$stats_for_sites{$site1}->{$site2} = [$delta_AB,$chisquared]; } } return %stats_for_sites;
}
mcdonald_kreitmandescriptionprevnextTop
sub mcdonald_kreitman {
    my ($self,@args) = @_;
    my ($ingroup, $outgroup,$polarized) = 
	$self->_rearrange([qw(INGROUP OUTGROUP POLARIZED)],@args);
    my $verbose = $self->verbose;
    my $outgroup_count;
    my $gapchar = '\-';
    if( ref($outgroup) =~ /ARRAY/i ) {
	$outgroup_count = scalar @$outgroup;
    } elsif( UNIVERSAL::isa($outgroup,'Bio::PopGen::PopulationI') ) {
	$outgroup_count = $outgroup->get_number_individuals;
    } else {
	$self->throw("Expected an ArrayRef of Individuals OR a Bio::PopGen::PopulationI");
    }
	
    if( $polarized ) {
	if( $outgroup_count < 2 ) {
	    $self->throw("Need 2 outgroups with polarized option\n");
	}
    } elsif( $outgroup_count > 1 ) {
	$self->warn(sprintf("%s outgroup sequences provided, but only first will be used",$outgroup_count ));
    } elsif( $outgroup_count == 0 ) {
	$self->throw("No outgroup sequence provided");
    }
    
    my $codon_path = Bio::MolEvol::CodonModel->codon_path;
    
    my (%marker_names,%unique,@inds);
    for my $p ( $ingroup, $outgroup)  {
	if( ref($p) =~ /ARRAY/i ) {
	    push @inds, @$p;
	} else {
	    push @inds, $p->get_Individuals;
	}
    }
    for my $i ( @inds ) {
	if( $unique{$i->unique_id}++ ) {
	    $self->warn("Individual ". $i->unique_id. " is seen more than once in the ingroup or outgroup set\n");
	}
	for my $n ( $i->get_marker_names ) {
	    $marker_names{$n}++;
	}
    }

    my @marker_names = keys %marker_names;
    if( $marker_names[0] =~ /^(Site|Codon)/ ) {
	# sort by site or codon number and do it in 
# a schwartzian transformation baby!
@marker_names = map { $_->[1] } sort { $a->[0] <=> $b->[0] } map { [$_ =~ /^(?:Codon|Site)-(\d+)/, $_] } @marker_names; } my $num_inds = scalar @inds; my %vals = ( 'ingroup' => $ingroup, 'outgroup' => $outgroup, ); # Make the Codon Table type a parameter!
my $table = Bio::Tools::CodonTable->new(-id => $codon_table); my @vt = qw(outgroup ingroup); my %changes; my %status; my %two_by_two = ( 'fixed_N' => 0, 'fixed_S' => 0, 'poly_N' => 0, 'poly_S' => 0); for my $codon ( @marker_names ) { my (%codonvals); my %all_alleles; for my $t ( @vt ) { my $outcount = 1; for my $ind ( @{$vals{$t}} ) { my @alleles = $ind->get_Genotypes($codon)->get_Alleles; if( @alleles > 2 ) { warn("Codon $codon saw ", scalar @alleles, " alleles for ind ", $ind->unique_id, "\n"); die; } else { my ($allele) = shift @alleles; $all_alleles{$ind->unique_id} = $allele; my $AA = $table->translate($allele); next if( $AA eq 'X' || $AA eq '*' || $allele =~ /N/i); my $label = $t; if( $t eq 'outgroup' ) { $label = $t.$outcount++; } $codonvals{$label}->{$allele}++; $codonvals{all}->{$allele}++; } } } my $total = sum ( values %{$codonvals{'ingroup'}} ); next if( $total && $total < 2 ); # skip sites with < alleles
# process all the seen alleles (codons)
# this is a vertical slide through the alignment
if( keys %{$codonvals{all}} <= 1 ) { # no changes or no VALID codons - monomorphic
} else { # grab only the first outgroup codon (what to do with rest?)
my ($outcodon) = keys %{$codonvals{'outgroup1'}}; if( ! $outcodon ) { $status{"no outgroup codon $codon"}++; next; } my $out_AA = $table->translate($outcodon); my ($outcodon2) = keys %{$codonvals{'outgroup2'}}; if( ($polarized && ($outcodon ne $outcodon2)) || $out_AA eq 'X' || $out_AA eq '*' ) { # skip if outgroup codons are different
# (when polarized option is on)
# or skip if the outcodon is STOP or 'NNN'
if( $verbose > 0 ) { $self->debug("skipping $out_AA and $outcodon $outcodon2\n"); } $status{'outgroup codons different'}++; next; } # check if ingroup is actually different from outgroup -
# if there are the same number of alleles when considering
# ALL or just the ingroup, then there is nothing new seen
# in the outgroup so it must be a shared allele (codon)
# so we just count how many total alleles were seen
# if this is the same as the number of alleles seen for just
# the ingroup then the outgroup presents no new information
my @ingroup_codons = keys %{$codonvals{'ingroup'}}; my $diff_from_out = ! exists $codonvals{'ingroup'}->{$outcodon}; if( $verbose > 0 ) { $self->debug("alleles are in: ", join(",", @ingroup_codons), " out: ", join(",", keys %{$codonvals{outgroup1}}), " diff_from_out=$diff_from_out\n"); for my $ind ( sort keys %all_alleles ) { $self->debug( "$ind\t$all_alleles{$ind}\n"); } } # are all the ingroup alleles the same and diferent from outgroup?
# fixed differences between species
if( $diff_from_out ) { if( scalar @ingroup_codons == 1 ) { # fixed differences
if( $outcodon =~ /^$gapchar/ ) { $status{'outgroup codons with gaps'}++; next; } elsif( $ingroup_codons[0] =~ /$gapchar/) { $status{'ingroup codons with gaps'}++; next; } my $path = $codon_path->{uc $ingroup_codons[0].$outcodon}; $two_by_two{fixed_N} += $path->[0]; $two_by_two{fixed_S} += $path->[1]; if( $verbose > 0 ) { $self->debug("ingroup is @ingroup_codons outcodon is $outcodon\n"); $self->debug("path is ",join(",",@$path),"\n"); $self->debug (sprintf("%-15s fixeddiff - %s;%s(%s) %d,%d\tNfix=%d Sfix=%d Npoly=%d Spoly=%s\n",$codon,$ingroup_codons[0], $outcodon,$out_AA, @$path, map { $two_by_two{$_} } qw(fixed_N fixed_S poly_N poly_S))); } } else { # polymorphic and all are different from outgroup
# Here we find the minimum number of NS subst
my ($Ndiff,$Sdiff) = (3,0); # most different path
for my $c ( @ingroup_codons ) { next if( $c =~ /$gapchar/ || $outcodon =~ /$gapchar/); my $path = $codon_path->{uc $c.$outcodon}; my ($tNdiff,$tSdiff) = @$path; if( $path->[0] < $Ndiff || ($tNdiff == $Ndiff && $tSdiff <= $Sdiff)) { ($Ndiff,$Sdiff) = ($tNdiff,$tSdiff); } } $two_by_two{fixed_N} += $Ndiff; $two_by_two{fixed_S} += $Sdiff; if( @ingroup_codons > 2 ) { $status{"more than 2 ingroup codons $codon"}++; warn("more than 2 ingroup codons (@ingroup_codons)\n"); } else { my $path = $codon_path->{uc join('',@ingroup_codons)}; $two_by_two{poly_N} += $path->[0]; $two_by_two{poly_S} += $path->[1]; if( $verbose > 0 ) { $self->debug(sprintf("%-15s polysite_all - %s;%s(%s) %d,%d\tNfix=%d Sfix=%d Npoly=%d Spoly=%s\n",$codon,join(',',@ingroup_codons), $outcodon,$out_AA,@$path, map { $two_by_two{$_} } qw(fixed_N fixed_S poly_N poly_S))); } } } } else { my %unq = map { $_ => 1 } @ingroup_codons; delete $unq{$outcodon}; my @unique_codons = keys %unq; # calc path for diff add to poly
# Here we find the minimum number of subst bw
# codons
my ($Ndiff,$Sdiff) = (3,0); # most different path
for my $c ( @unique_codons ) { my $path = $codon_path->{uc $c.$outcodon }; if( ! defined $path ) { die " cannot get path for ", $c.$outcodon, "\n"; } my ($tNdiff,$tSdiff) = @$path; if( $path->[0] < $Ndiff || ($tNdiff == $Ndiff && $tSdiff <= $Sdiff)) { ($Ndiff,$Sdiff) = ($tNdiff,$tSdiff); } } if( @unique_codons == 2 ) { my $path = $codon_path->{uc join('',@unique_codons)}; if( ! defined $path ) { $self->throw("no path for @unique_codons\n"); } $Ndiff += $path->[0]; $Sdiff += $path->[1]; } $two_by_two{poly_N} += $Ndiff; $two_by_two{poly_S} += $Sdiff; if( $verbose > 0 ) { $self->debug(sprintf("%-15s polysite - %s;%s(%s) %d,%d\tNfix=%d Sfix=%d Npoly=%d Spoly=%s\n",$codon,join(',',@ingroup_codons), $outcodon,$out_AA, $Ndiff, $Sdiff, map { $two_by_two{$_} } qw(fixed_N fixed_S poly_N poly_S))); } } } } return ( $two_by_two{'poly_N'}, $two_by_two{'fixed_N'}, $two_by_two{'poly_S'}, $two_by_two{'fixed_S'}, {%status}); } *MK =\& mcdonald_kreitman;
}
mcdonald_kreitman_countsdescriptionprevnextTop
sub mcdonald_kreitman_counts {
    my ($self,$Npoly,$Nfix,$Spoly,$Sfix) = @_;
    if( $has_twotailed ) {
	return &Text::NSP::Measures::2D::Fisher2::twotailed::calculateStatistic 
	    (n11=>$Npoly,
	     n1p=>$Npoly+$Spoly,
	     np1=>$Npoly+$Nfix,
	     npp=>$Npoly+$Nfix+$Spoly+$Sfix);
    } else {
	$self->warn("cannot call mcdonald_kreitman_counts because no Fisher's exact is available - install Text::NSP::Measures::2D::Fisher2::twotailed");
	return 0;
    }
}


1;
}
General documentation
FEEDBACKTop
Mailing ListsTop
User feedback is an integral part of the evolution of this and other
Bioperl modules. Send your comments and suggestions preferably to
the Bioperl mailing list. Your participation is much appreciated.
  bioperl-l@bioperl.org                  - General discussion
http://bioperl.org/wiki/Mailing_lists - About the mailing lists
Support Top
Please direct usage questions or support issues to the mailing list:
bioperl-l@bioperl.org
rather than to the module maintainer directly. Many experienced and
reponsive experts will be able look at the problem and quickly
address it. Please include a thorough description of the problem
with code and data examples if at all possible.
Reporting BugsTop
Report bugs to the Bioperl bug tracking system to help us keep track
of the bugs and their resolution. Bug reports can be submitted via
the web:
  https://redmine.open-bio.org/projects/bioperl/
AUTHOR - Jason Stajich, Matthew HahnTop
Email jason-at-bioperl-dot-org
Email matthew-dot-hahn-at-duke-dot-edu
McDonald-Kreitman implementation based on work by Alisha Holloway at
UC Davis.
APPENDIXTop
The rest of the documentation details each of the object methods.
Internal methods are usually preceded with a _
newTop
 Title   : new
Usage : my $obj = Bio::PopGen::Statistics->new();
Function: Builds a new Bio::PopGen::Statistics object
Returns : an instance of Bio::PopGen::Statistics
Args : none