Bio::Tools::Analysis::Protein Sopma
SummaryIncluded librariesPackage variablesSynopsisDescriptionGeneral documentationMethods
Toolbar
WebCvs
Summary
Bio::Tools::Analysis::Protein::Sopma - a wrapper around the
Sopma protein secondary structure prediction server
Package variables
Privates (from "my" definitions)
$ANALYSIS_SPEC = {name => 'Sopma', type => 'Protein'}
$URL = 'http://npsa-pbil.ibcp.fr/cgi-bin/secpred_sopma.pl'
$ANALYSIS_NAME = 'Sopma'
$INPUT_SPEC = [ {mandatory=>'true', type => 'Bio::PrimarySeqI', 'name' => 'seq', }, {mandatory =>'false', type => 'integer', name => 'similarity_threshold', default => 8, }, {mandatory =>'false', type => 'integer', name => 'window_width', default => 17, }, {mandatory =>'false', type => 'integer', name => 'states', default => 4, }, ]
$RESULT_SPEC = { '' => 'bulk', raw => '[{struc=>, helix=>, turn=>, coil=>, sheet=>}]', meta => 'Bio::Seq::Meta::Array object', 'Bio::SeqFeatureI' => 'ARRAY of Bio::SeqFeature::Generic', }
Included modules
Bio::Seq::Meta::Array
Bio::SeqFeature::Generic
Bio::SeqIO
HTTP::Request::Common qw ( POST )
IO::String
Inherit
Bio::Tools::Analysis::SimpleAnalysisBase
Synopsis
  use Bio::Tools::Analysis::Protein::Sopma;
#get a Bio::Seq or Bio::PrimarySeq
my $seq;
my $sopma = Bio::Tools::Analysis::Protein::Sopma->new (-seq=>$seq, states=>4); $sopma->run; print $sopma->result;# #raw text to standard error
Description
A module to remotely retrieve predictions of protein secondary
structure. Each residue in the protein receives a score representing
the likelihood of existing in each of four different states (helix,
coil, turn or sheet), e.g.,
  my $analysis_object = Bio::Tools::SimpleAnalysis::Protein::Sopma->new
( -seq => $seq,
-states => 4,
-window_width => 15,
);
creates a new object. Compulsory argument -seq. Optional arguments
-states, -window_width,-similarity_threshold. These arguments can also be
set by direct methods , e.g.,
  $analysis_object->states(4);
$analysis_object->run;
submits the query to the server and obtains raw text output. Given an
amino acid sequence the results can be obtained in 4 formats,
determined by the argument to the result method:
    1
    The raw text of the program output.
  my $rawdata = $analysis_object->result;
    2
    A reference to an array of hashes of scores for each state and the
assigned state.
  my $data_ref = $analysis_object->result('parsed');
print "score for helix at residue 2 is $data_ref->[1]{'helix'}\n";
print "predicted struc at residue 2 is $data_ref->[1]{'struc}\n";
    Hash keys are 'helix', 'struc', 'sheet', 'coil', 'turn'.
    3
    An array of Bio::SeqFeature::Generic objects where each feature is a
predicted unit of secondary structure. Only stretches of helix/sheet
predictions for longer than 4 residues are defined as helices/sheets.
  my @fts = $analysis_object->result(Bio::SeqFeatureI);
for my $ft (@fts) {
print " From ", $ft->start, " to ",$ft->end, " struc: " ,
($ft->each_tag_value('type'))[0] ,"\n";
}
    4
    A Bio::Seq::Meta::Array implementing sequence.
    This is a Bio::Seq object that can also hold data about each residue
in the sequence. In this case, the sequence can be associated with a
arrays of Sopma prediction scores. e.g.,
  my $meta_sequence = $analysis_object->result('meta');
print "scores from residues 10 -20 are ",
$meta_sequence->named_submeta_text("Sopma_helix",10,20), "\n";
    Meta sequence names are : Sopma_helix, Sopma_sheet, Sopma_turn,
Sopma_coil, Sopma_struc, representing the scores for each residue.
    Many methods common to all analyses are inherited from
Bio::Tools::Analysis::SimpleAnalysisBase.
Methods
similarity_thresholdDescriptionCode
window_widthDescriptionCode
statesDescriptionCode
resultDescriptionCode
_init
No description
Code
_get_2ary_coords
No description
Code
_run
No description
Code
_add_params_to_result
No description
Code
Methods description
similarity_thresholdcode    nextTop
  Useage  : $job->similarity_threshold(...)
Returns : The similarity threshold used in the analysis
Args : None (retrieves value) or an integer (default = 8)
that sets the similarity threshold .
This method gets/sets the similarity threshold for the prediction.
window_widthcodeprevnextTop
  Usage    : $job->window_width(...)
Returns : The window width used in the analysis
Args : None (retrieves value) or an integer (default = 17)
that sets the window width.
This method gets/sets the window width for the prediction, . If
attempted to set longer than the sequence, warns of error.
statescodeprevnextTop
  Usage    : $job->states(...)
Returns : The number of secondary structure prediction states
Args : None (retrieves value) or either '3' or '4' to set
prior to running analysis.
This method gets/sets the number of states for the prediction, either
3 or 4 (includes turns).
resultcodeprevnextTop
  Usage   : $job->result (...)
Returns : a result created by running an analysis
Args : various
The method returns a result of an executed job. If the job was
terminated by an error the result may contain an error message instead
of the real data.
This implementation returns differently processed data depending on
argument:
   undef
   Returns the raw ASCII data stream but without HTML tags
   'Bio::SeqFeatureI'
   The argument string defines the type of bioperl objects returned in an
array. The objects are Bio::SeqFeature::Generic. Feature primary
tag is "2ary". Feature tags are "type" (which can be helix, sheet
coil, or turn if 4 state prediction requested) "method" (Sopma)
   'parsed'
   Array of hash references of scores/structure assignations
{ helix => , sheet => , coil => , struc=>}.
   'all'
   A Bio::Seq::Meta::Array object. Scores can be accessed using methods
from this class. Meta sequence names are Sopma_helix, Sopma_sheet,
Sopma_coil, Sopma_turn (if defined), and Sopma_struc.
Methods code
similarity_thresholddescriptionprevnextTop
sub similarity_threshold {
    my ($self, $value) = @_;
    if ($value) {
        $self->throw ("similarity_threshold must be integer")
            unless $value =~ /^\d+$/;
        $self->{'_similarity_threshold'} = $value;
    }
    $self->{'_similarity_threshold'} ||= $self->input_spec->[1]{'default'};
    return $self->{'_similarity_threshold'};
}
window_widthdescriptionprevnextTop
sub window_width {
    my ($self, $value) = @_;
    if ($value) {
        $self->throw ("window_width must be integer")
            unless $value =~ /^\d+$/;
        $self->{'_window_width'} = $value;
    }
    $self->{'_window_width'} ||= $self->input_spec->[2]{'default'};
    $self->warn ("window width longer than sequence!")
        unless $self->{'_window_width'} < $self->seq->length;
    return $self->{'_window_width'};
}
statesdescriptionprevnextTop
sub states {
    my ($self, $value) = @_;
    if ($value) {
        $self->throw ("number of states must be 3 or 4")
            unless $value == 3 or $value ==4;
        $self->{'_states'} = $value;
    }
    $self->{'_states'} ||= $self->input_spec->[3]{'default'};
    return $self->{'_states'};
}
resultdescriptionprevnextTop
sub result {
    my ($self,$value, $run_id) = @_;

    my @score;
    my @fts;

    if ($value ) {
        if (!exists($self->{'_parsed'} )) {
            my $result = IO::String->new($self->{'_result'});
            while (my $line = <$result>) {
                next unless $line =~ /^[HCET]\s/; # or for sopma/hnn  /^[A-Z]\s/
$line =~/^([A-Z])\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/; # or for so
push @score, { struc => $1, helix => $2, sheet => $3, coil => $5, }; #include turn if 4states are requested
$score[$#score]{'turn'} = $4 if $self->states == 4; #can optimize by duplicating code here
} $self->{'_parsed'} =\@ score; } if ($value eq 'Bio::SeqFeatureI') { $self->_get_2ary_coords(); for my $type (keys %{$self->{'_parsed_coords'}} ) { next if $type =~ /\w{2,}/; #if not H,C,E or T
## these 2 are added to distinguish features on same
## sequence run with different params
my $tag_hash = { type => $type, method => $self->analysis_name, }; $self->_add_params_to_result($tag_hash); ## now make feature object
for my $loc (@{$self->{'_parsed_coords'}{$type}} ) { push @fts, Bio::SeqFeature::Generic->new (-start => $loc->{'start'}, -end => $loc->{'end'}, -source => 'Sopma', -primary => 'Domain', -tag => $tag_hash, ); } #end of array of strucs of type
} # end of all 2nd struc elements
delete $self->{'_parsed_coords'}; #remove temp data
return @fts; } #endif BioSeqFeature
elsif ($value eq 'meta') { #1st of all make 3 or 4 arrays of scores for each type from column data
my %type_scores; for my $aa (@{$self->{'_parsed'}}) { for my $type (qw(struc helix sheet coil)) { push @{$type_scores{$type}}, $aa->{$type}; } push @{$type_scores{'turn'}}, $aa->{'turn'} if exists $aa->{'turn'}; } ## convert to meta sequence array ##
if (!$self->seq->isa("Bio::Seq::Meta::Array")) { bless ($self->seq, "Bio::Seq::Meta::Array"); } $self->seq->isa("Bio::Seq::MetaI") || $self->throw("$self is not a Bio::Seq::MetaI"); $Bio::Seq::Meta::Array::DEFAULT_NAME = 'Sopma_struc'; for my $struc_type (keys %type_scores) { my $meta_name = "Sopma". "_" . "$struc_type"; if ($run_id) { $meta_name .= "|$run_id"; } my @meta = map{$_->{$struc_type}} @{$self->{'_parsed'}}; if (grep{$_ eq $meta_name}$self->seq->meta_names >0) { $self->warn ("$meta_name already exists , not overwriting!"); next; } $self->seq->named_meta($meta_name,\@meta ); } # return seq array object implementing meta sequence #
return $self->seq; } ## else return parsed data if $value is defined
else { return $self->{'_parsed'}; } } #endif ($value)
#return raw result if no return format stated
return $self->{'_result'};
}
_initdescriptionprevnextTop
sub _init {
    my $self = shift;
    $self->url($URL);
    $self->{'_ANALYSIS_SPEC'} = $ANALYSIS_SPEC;
    $self->{'_INPUT_SPEC'}    = $INPUT_SPEC;
    $self->{'_RESULT_SPEC'}   = $RESULT_SPEC;
    $self->{'_ANALYSIS_NAME'} = $ANALYSIS_NAME;
    return $self;
}
_get_2ary_coordsdescriptionprevnextTop
sub _get_2ary_coords {
    #helper sub for result;
##extracts runs of structure > MIN_STRUC_LENresidues or less if Turn:
#i.e., helical prediction for 1 residue isn't very meaningful...
## and poulates array of hashes with start/end values.
##keys of $Result are 'H' 'T' 'C' 'E'.
my ($self) = @_; my @prot = @{$self->{'_parsed'}}; my %Result; for (my $index = 0; $index <= $#prot; $index++) { my $type = $prot[$index]{'struc'}; next unless $type && $type =~ /[HTCE]/; my $length = 1; for (my $j = $index + 1; $j <= $#prot; $j++) { my $test = $prot[$j]; if ($test->{'struc'} eq $type) { $length++; } elsif ( $length > MIN_STRUC_LEN || ($length <= MIN_STRUC_LEN && $type eq 'T') ) { push @{$Result{$type}}, {start => $index + 1 , end => $j}; $index += $length -1; last; } else { $index += $length - 1; last; } } } $self->{'_parsed_coords'} =\% Result; #temp assignment
}
_rundescriptionprevnextTop
sub _run {
    my $self  = shift;
    $self->delay(1);
    # delay repeated calls by default by 3 sec, set delay() to change
$self->sleep; $self->status('TERMINATED_BY_ERROR'); my $request = POST 'http://npsa-pbil.ibcp.fr/cgi-bin/secpred_sopma.pl', Content_Type => 'form-data', Content => [title => "", notice => $self->seq->seq, ali_width => 70, states => $self->states, threshold => $self->similarity_threshold , width => $self->window_width, ]; my $text = $self->request($request)->content; return $self unless $text; #### get text only version of results ##
my ($next) = $text =~ /Prediction.*?=(.*?)>/; my $out = "http://npsa-pbil.ibcp.fr/". "$next"; my $req2 = HTTP::Request->new(GET=>$out); my $resp2 = $self->request ($req2); $self->{'_result'} = $resp2->content; $self->status('COMPLETED') if $resp2 ne ''; return $self;
}
_add_params_to_resultdescriptionprevnextTop
sub _add_params_to_result {
	## called when making Seqfeature objects
my ($self, $tag_hash) = @_; my $hash; ## adds input parameter values to SeqFeatureI results where multiple
## parameter values are possible. Only adds value if not default.
map{$hash->{$_->{'name'}} = $_}@{$self->input_spec()}; for my $p (keys %$hash) { if (!ref($self->$p) && $self->$p ne $hash->{$p}{'default'}) { $tag_hash->{$p} = $self->$p; } } } 1;
}
General documentation
SEE ALSOTop
Bio::SimpleAnalysisI,
Bio::Tools::Analysis::SimpleAnalysisBase
Bio::Seq::Meta::Array,
Bio::WebAgent
FEEDBACKTop
Mailing ListsTop
User feedback is an integral part of the evolution of this and other
Bioperl modules. Send your comments and suggestions preferably to one
of the Bioperl mailing lists. Your participation is much appreciated.
  bioperl-l@bioperl.org                  - General discussion
http://bioperl.org/wiki/Mailing_lists - About the mailing lists
Support Top
Please direct usage questions or support issues to the mailing list:
bioperl-l@bioperl.org
rather than to the module maintainer directly. Many experienced and
reponsive experts will be able look at the problem and quickly
address it. Please include a thorough description of the problem
with code and data examples if at all possible.
Reporting BugsTop
Report bugs to the Bioperl bug tracking system to help us keep track
the bugs and their resolution. Bug reports can be submitted via the
web:
  https://redmine.open-bio.org/projects/bioperl/
AUTHORSTop
Richard Adams, Richard.Adams@ed.ac.uk,
APPENDIXTop